HEAT FLOW DURING WELDING

- ONE-DIMENSIONAL PLANAR SOLUTION

\[T - T_0 = \frac{Q/A}{(4\pi t)^{1/2}} \cdot \frac{1}{\rho c_p} \cdot \exp \left[-\frac{x^2}{4at} \right] \]

Example: Friction weld

\(t_0 < t_1 < t_2 \)

- TWO-DIMENSIONAL LINE SOURCE SOLUTION

\[T - T_0 = \frac{Q/\delta}{(4\pi t)^{1/2}} \cdot \frac{1}{\rho c_p} \cdot \exp \left[-\frac{r^2}{4at} \right] \]

\[r = \sqrt{x^2 + y^2} \]

Example: Two-dimensional Gaussian

Deep penetration laser or electron beam
Three-Dimensional Heat Flow - Point Source Solution

\[
T - T_0 = \frac{Q}{(4\pi at)^{3/2}} \cdot \frac{1}{\rho C_p} \exp\left(-\frac{R^2}{4\pi at}\right)
\]

\(R = \sqrt{x^2+y^2+z^2} \)

\(Q \) is the strength of a "buried" heat source.

If the heat source is on the top surface of a thick plate, \(Q'(\text{top surface}) = \frac{Q}{2} \)

Rosenthal Moving Point Source Solution

\[
T - T_0 = \frac{8}{2\pi \lambda \rho} \cdot \frac{1}{R} \exp\left[-\frac{\nu}{2\lambda} (R+\lambda)\right]
\]

Moving in \(x \)-direction, at velocity, \(\nu \).

\(\rho \) is the strength of a point heat source on the surface.

In dimensionless form \(\Theta = \frac{1}{\rho} \exp(-\rho + \lambda) \)
<table>
<thead>
<tr>
<th>Problem</th>
<th>Criterion</th>
<th>Formula (wt %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon equivalent</td>
<td></td>
<td>[C_{equiv} = C + \frac{Mn}{6} + \frac{Cr + Mn + V}{5} + \frac{Ni + Cu}{15}]</td>
</tr>
<tr>
<td>Carbon equivalent for the pearlite-free and reduced-pearlite steels</td>
<td></td>
<td>[C^D_{equiv} = C + \frac{Si}{25} + \frac{Mn + Cr}{16} + \frac{Cr}{20} + \frac{Ni}{20} + \frac{Mo}{20} + \frac{V}{15}]</td>
</tr>
<tr>
<td>Maximum hardness of the underbead zone</td>
<td></td>
<td>[HV_{max} = 90 + 1050 C + 47 Si + 75 Mn + 30 Ni + 31 Cr]</td>
</tr>
<tr>
<td>Cracking parameter for low-alloy steels</td>
<td></td>
<td>[P_{CM} = C + \frac{Si}{30} + \frac{Mn}{20} + \frac{Cu}{20} + \frac{Ni}{60} + \frac{Cr}{20} + \frac{Mo}{15} + \frac{V}{15}]</td>
</tr>
</tbody>
</table>
| Cracking parameter for the low-alloy steels. Cold cracks | The cracks can occur when \(P_{WB} > 0 \) | \[P_{WB} = P_{CM} + \frac{H}{60} + \frac{K}{40 \times 10^5} \]
\(H \)-glycerine test, \(H = 0.64 H_{IW} - 0.93 \)
For butt joints, \(K = 66 s \)
(s = sheet thickness, mm) |
| Cracking parameter for cold cracks | The cracks occur when \(P_s > 1 \), the cracks do not occur when \(P_s < 0.5 \) | \[P_s = \log \frac{V_i}{V_1} + \frac{H}{10} + \frac{K}{5000} \]
\(V_i \) is the actual cooling rate of the HAZ at 300°C
\(V_1 \) is the critical rate for martensitic reaction
\(H \) is the amount of diffusible hydrogen in the base metal (IIW)
\(K \) is the intensity of restraint for the butt joints \(K = 66a \) |
| Cracking parameter for cold cracks | The cracks do not occur when \(P_{NB} < 0.25 \% \) | \[P_{NB} = C + \frac{Si}{20} + \frac{Mn}{10} + \frac{Cu}{20} + \frac{Cr}{30} + \frac{Mo}{20} \] |
| Calculation of preheat temperature | | \[T = 1.440 P_{WB} - 392 \degree C \]
\[T = 350 \left(\frac{1}{360} [360 C + 40 (Mn + Cr)] + 20 Ni + 28 Mo \right) \times \left[1 + 0.005 s - 0.25s \right]^{0.66} \degree C \]
\(s \) = sheet thickness in mm |
| Hot cracking susceptibility (HCS) | Cracks do not occur when HCS < 4, but for the low-alloy steels HCS = 1.6 + 2 | \[\text{HCS} = \frac{C(S + P) + \frac{Si}{25} + \frac{Ni}{100}}{3Mn + Cr + Mo + V} \times 10^6 \] |
| Susceptibility of steel to stress-relief cracking | \(P_{SR} \leq 0 \) | \[P_{SR} = Cr + Cu + 2 Mo + 7 Nb - 5 Ti - 2 \] |