Fundamentals of Welding
Chairperson: Thomas W. Eagar, Massachusetts Institute of Technology

- Energy Sources Used for Fusion Welding .. 3
- Heat Flow in Fusion Welding ... 7
- Fluid Flow Phenomena During Welding .. 19
- Transfer of Heat and Mass to the Base Metal in Gas-Metal Arc Welding 25
- Arc Physics of Gas-Tungsten Arc Welding .. 30
- Power Sources .. 36
- Fundamentals of Weld Solidification ... 45
- Nature and Behavior of Fluxes Used for Welding 55
- Shielding Gases .. 64
- Solid-State Transformations in Weldments .. 70
- Cracking Phenomena Associated With Welding 88
- Characterization of Welds .. 97
Energy Sources Used for Fusion Welding

Thomas W. Eagar, Massachusetts Institute of Technology

WELDING AND JOINING processes are essential for the development of virtually every manufactured product. However, these processes often appear to consume greater fractions of the product cost and to create more of the production difficulties than might be expected. There are a number of reasons that explain this situation.

First, welding and joining are multifaceted, both in terms of process variations (such as fastening, adhesive bonding, soldering, brazing, arc welding, diffusion bonding, and resistance welding) and in the disciplines needed for problem solving (such as mechanics, materials science, physics, chemistry, and electronics). An engineer with unusually broad and deep training is required to bring these disciplines together and to apply them effectively to a variety of processes.

Second, welding or joining difficulties usually occur far into the manufacturing process, where the relative value of scrapped parts is high.

Third, a very large percentage of product failures occur at joints because they are usually located at the highest stress points of an assembly and are therefore the weakest parts of that assembly. Careful attention to the joining processes can produce great rewards in manufacturing economy and product reliability.

The Section "Fusion Welding Processes" in this Volume provides details about equipment and systems for the major fusion welding processes. The purpose of this Section of the Volume is to discuss the fundamentals of fusion welding processes, with an emphasis on the underlying scientific principles.

Because there are many fusion welding processes, one of the greatest difficulties for the manufacturing engineer is to determine which process will produce acceptable properties at the lowest cost. There are no simple answers. Any change in the part geometry, material, value of the end product, or size of the production run, as well as the availability of joining equipment, can influence the choice of joining method. For small lots of complex parts, fastening may be preferable to welding, whereas for long production runs, welds can be stronger and less expensive.

The perfect joint is indistinguishable from the material surrounding it. Although some processes, such as diffusion bonding, can achieve results that are very close to this ideal, they are either expensive or restricted to use with just a few materials. There is no universal process that performs adequately on all materials in all geometries. Nevertheless, virtually any material can be joined in some way, although joint properties equal to those of the bulk material cannot always be achieved.

The economics of joining a material may limit its usefulness. For example, aluminum is used extensively in aircraft manufacturing and can be joined by using adhesives or fasteners, or by welding. However, none of these processes has proven economical enough to allow the extensive replacement of steel by aluminum in the frames of automobiles. An increased use of composites in aircrafts is limited by an inability to achieve adequate joint strength.

It is essential that the manufacturing engineer work with the designer from the point of product conception to ensure that compatible materials, processes, and properties are selected for the final assembly. Often, the designer leaves the problem of joining the parts to the manufacturing engineer. This can cause an escalation in cost and a decrease in reliability. If the design has been planned carefully and the parts have been produced accurately, the joining process becomes much easier and cheaper, and both the quality and reliability of the product are enhanced.

Generally, any two solids will bond if their surfaces are brought into intimate contact. One factor that generally inhibits this contact is surface contamination. Any freshly produced surface exposed to the atmosphere will absorb oxygen, water vapor, carbon dioxide, and hydrocarbons very rapidly. If it is assumed that each molecule that hits the surface will be absorbed, then the time-pressure value to produce a monolayer of contamination is approximately 0.001 Pa \cdot s (10^{-8} \text{ atm} \cdot \text{s}). For example, at a pressure of 1 Pa (10^{-8} \text{ atm}), the contamination time is 10^{-3} s, whereas at 0.1 MPa (1 atm), it is only 10×10^{-9} s.

In fusion welding, intimate interfacial contact is achieved by interposing a liquid of substantially similar composition as the base metal. If the surface contamination is soluble, then it is dissolved in the liquid. If it is insoluble, then it will float away from the liquid-solid interface.

Energy-Source Intensity

One distinguishing feature of all fusion welding processes is the intensity of the heat source used to melt the liquid. Virtually every concentrated heat source has been applied to the welding process. However, many of the characteristics of each type of heat source are determined by its intensity. For example, when considering a planar heat source diffusing into a very thick slab, the surface temperature will be a function of both the surface power density and the time.

Figure 1 shows how this temperature will vary on steel with power densities that range from 400 to 8000 W/cm². At the lower level, it takes 2 min to melt the surface. If that heat source were a point on the flat surface, then the heat flow would be divergent and might not melt the steel. Rather, the solid metal would be able to conduct away the heat as fast as it was being introduced. It is generally found that heat-source power densities of approximately 1000 W/cm² are necessary to melt most metals.

At the other end of the power-density spectrum, heat intensities of 10^6 or 10^7 W/cm² will vaporize most metals within a few microseconds. At levels above these values, all of the solid that interacts with the heat source will be vaporized, and no fusion welding can occur. Thus, the heat sources for all fusion welding processes should have power densities between approximately 0.001 and 1 MW/cm². This
Fundamentals of Welding

Distance from joint, in.

<table>
<thead>
<tr>
<th>Distance from joint, in.</th>
<th>Heat capacity, J/kg·K</th>
<th>Thermal conductivity, W/m·K</th>
<th>Thermal diffusivity, cm²/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.098</td>
<td>211</td>
<td>0.53</td>
</tr>
<tr>
<td>0.8</td>
<td>0.23</td>
<td>14</td>
<td>0.14</td>
</tr>
<tr>
<td>1.6</td>
<td>0.39</td>
<td>8</td>
<td>0.069</td>
</tr>
<tr>
<td>2.4</td>
<td>0.56</td>
<td>8</td>
<td>0.15</td>
</tr>
<tr>
<td>3.2</td>
<td>0.73</td>
<td>8</td>
<td>0.188</td>
</tr>
<tr>
<td>4.0</td>
<td>0.89</td>
<td>8</td>
<td>0.188</td>
</tr>
<tr>
<td>4.8</td>
<td>1.06</td>
<td>11</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Table 1 Thermal diffusivities of common elements from 20 to 100 °C (68 to 212 °F)

Table 2 Thermal diffusivities of common alloys from 20 to 100 °C (68 to 212 °F)

The fact that power density is inversely related to the interaction time of the heat source on the material is evident in Fig. 1. Because this represents a transient heat conduction problem, one can expect the heat to diffuse into the steel to a depth that increases as the square root of time, that is, from the Einstein equation:

\[x \sim \sqrt{at} \quad \text{(Eq 1)} \]

where \(x \) is the distance that the heat diffuses into the solid, in centimeters; \(\alpha \) is the thermal diffusivity of the solid, in \(\text{cm}^2/\text{s} \); and \(t \) is the time in seconds. Tables 1 and 2 give the thermal diffusivities of common elements and common alloys, respectively.

For the planar heat source on a steel surface, as represented by Fig. 1, the time in seconds to produce melting on the surface, \(t_m \), is given by:

\[t_m = \left(\frac{5000}{\text{H.I.}} \right)^2 \quad \text{(Eq 2)} \]

where H.I. is the net heat intensity (in \(\text{W/cm}^2 \)) transferred to the workplace.

Equation 2 provides a rough estimate of the time required to produce melting, and is based upon the thermal diffusivity of steel. Materials with higher thermal diffusivities—or the use of a local point heat source rather than a planar heat source—will increase the time to produce melt-
whereas steels, nickel alloys, or titanium would lie near the top of this band, whereas steels, nickel alloys, or titanium would lie near the top of this band, whereas steels, nickel alloys, or titanium would lie near the top of this band. Fig. 2 illustrates the capital costs of welding equipment and speed at which sheet metal joints can be produced.

Fig. 3 Typical weld pool-heat source interaction times as function of heat-source intensity. Materials with a high thermal diffusivity, such as copper or aluminum, would lie near the top of this band, whereas steels, nickel alloys, or titanium would lie in the middle. Uranium and ceramics, with very low thermal diffusivities, would lie near the bottom of the band.

Fig. 4 Maximum weld travel velocity as a function of heat-source intensity based on typical heat-source spot diameters.

Fig. 5 Approximate relationship between capital cost of welding equipment and speed at which sheet metal joints can be produced.

Fig. 6 Range of weld HAZ widths as function of heat-source intensity.

The weld pool created by the high-heat-intensity processes, such as laser-beam and electron-beam welding, cannot be humanly controlled and must therefore be automated. This need to automate leads to increased capital costs. On an approximate basis, the $/cm² of a process can be substituted with the dollar cost of the capital equipment. With reference to Fig. 2, the cost of oxyacetylene welding equipment is nearly $1000, whereas a fully automated laser-beam or electron-beam system can cost $1 million. Note that the capital cost includes only the energy source, control system, fixturing, and materials handling equipment. It does not include operating maintenance or inspection costs, which can vary widely depending on the specific application.

For constant total power, a decrease in the spot size will produce a squared increase in the heat intensity. This is one of the reasons why the spot size decreases with increasing heat intensity (Fig. 4). It is easier to make the spot smaller than it is to increase the power rating of the equipment. In addition, only a small volume of material usually needs to be melted. If the spot size were kept constant and the input power were squared in order to obtain higher densities, then the volume of fused metal would increase dramatically, with no beneficial effect.

However, a decreasing spot size, coupled with a decreased interaction time at higher power densities, compounds the problem of controlling the higher-heat-intensity process. A shorter interaction time means that the sensors and controllers necessary for automation must operate at higher frequencies. The smaller spot size means that the positioning of the heat source must be even more precise, that is, on the order of the heat-source diameter, d_h. The control frequency must be greater than the travel velocity divided by the diameter of the heat source. For processes that operate near the maximum travel velocity, this is the inverse of the process interaction time, t_i (Fig. 3). Thus, not only must the high-heat-intensity processes be automated because of an inherently high travel speed, but the fixturing requirements become greater, and the control systems and sensors must have ever-higher frequency responses. These factors lead to increased costs, which is one reason that the very productive laser-beam and electron-beam welding processes have not found wider use. The approximate productivity of selected welding processes, expressed as length of weld produced per second, to the relative capital cost of equipment is shown in Fig. 5.

Another important welding process parameter that is related to the power density of the heat source is the width of the heat-affected zone (HAZ). This zone is adjacent to the weld metal and is not melted itself but is structurally changed because of the heat of welding. Using the Einstein equation, the HAZ width can be estimated from the process interaction time and the thermal diffusivity of the material. This is shown in Fig. 6, with one slight modification. At levels above approximately 10^4W/cm^2, the HAZ width becomes roughly constant. This is due to the fact that the HAZ grows during the heating stage at power densities that are below 10^4W/cm^2, but at higher power densities it grows during the cooling cycle. Thus, at low power densities, the HAZ width is controlled by the interaction time, whereas at high power densities, it is independent of the heat-source interaction time. In the latter case, the HAZ width grows during the cooling cycle as the heat of fusion is removed from the weld metal, and is proportional to the fusion zone width.

The change of slope in Fig. 6 also represents the heat intensity at which the heat utilization efficiency of the process changes. At high heat intensities, nearly all of the heat is used to melt the material and little is wasted in preheating the surroundings. As heat intensity decreases, this efficiency is reduced. For arc welding, as little as half of the heat generated may enter the plate, and only 40% of this heat is used to fuse the metal. For oxyacetylene weld-
ing, the heat entering the metal may be 10% or less of the total heat, and the heat necessary to fuse the metal may be less than 2% of the total heat.

A final point is that the heat intensity also controls the depth-to-width ratio of the molten pool. This value can vary from 0.1 in low-heat-intensity processes to more than 10 in high-heat-intensity processes.

It should now be evident that all fusion welding processes can be characterized generally by heat-source intensity. The properties of any new heat source can be estimated readily from the figures in this article. Nonetheless, it is useful to more fully understand each of the common welding heat sources, such as flames, arcs, laser beams, electron beams, and electrical resistance. These are described in separate articles in the Section “Fusion Welding Processes” in this Volume.