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Various ratio pyrometry techniques (two, three, and four color) are analyzed and shown to 
possess hitherto unknown sources of error under certain conditions. These conditions are 
shown to arise quite frequently. The ratio method is shown to be better suited to the shorter 
wavelengths. It has been shown, for various emissivities, that the predicted temperature has an 
asymptote at some wavelength. Ratio pyrometry methods are shown to be very sensitive to 
measurement noise and this sensitivity grows quickly with the number of terms in the ratio. 
The effect of a reference temperature in the system is examined and it is shown that under 
certain conditions this rerference temperature can be used to make accurate predictions 
regarding the temperature elsewhere in the system even if the emissivity changes. 

1.lNTf?ODUCTlON 
The accurate measurement and control of temperature 

can be of great importance in most materials manufacturing 
and processing applications. With present-day technology 
such measurement almost always requires either physical 
contact with the subject or an extensive calibration proce- 
dure. In many cases contact is either not desirable, because it 
may significantly alter the temperature or other characteris- 
tics of the subject, or is not possible, because the subject is 
moving, is too far away, is too hot or is in an otherwise hostile 
environment. Similarly calibration may not be possible if the 
characteristics change too much. 

A prime example of a process in which physical contact 
is not desirable is the growth of silicon single crystals. The 
quality of the final crystal is very strongly dependent on both 
the purity of the metal and the convection velocity fields in 
the melt. These velocity fields in turn are a strong function of 
the temperature distribution within the melt. Here, it is un- 
desirable to place a probe in contact with the melt because 
(a) it might affect the temperature and velocity fields, and 
(b) molten silicon is an excellent solvent of most materials 
and is therefore easily contaminated. Accurate temperature 
measurement is also important for many of the stages in the 
processing of both silicon and gallium-arsenide semiconduc- 
tor devices, an example of this would be fast thermal process- 
ing. Additionally, the ever increasing demand for faster and 
smaller devices increases the importance of temperature 
control during processing. 

In the steel industry continuous casting is an increasing- 
ly important process for the manufacture of steel plate and 
sheet. This is another process in which it is not possible to 
make effective contact with the plate, in this case because the 
plate is constantly moving. The American Iron and Steel 
Institute (AISI) estimated in 1982 that an accurate non- 
contact temperature sensor would save the industry about 
$275 million per year. 
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Another example of an area requiring accurate tempera- 
ture sensing is the jet engine industry. Aircraft engine manu- 
facturers are increasingly concerned with very accurate tem- 
perature measurement and control in the engine. It has been 
estimated that a 5” rise in the temperature of certain critical 
components can lead to a 10% decline in engine life. 

Similarly there are many applications in research and 
development where very accurate noncontact temperature 
measurement is required. One example is in welding re- 
search. The velocity fields within the molten puddle of metal 
underneath the arc are a strong function of the temperature 
distribution within the puddle. The final shape and integrity 
of the weld depend upon these velocity fields. It is therefore 
desirable to know the temperature distribution within the 
puddle. The physical size of the puddle and the large tem- 
perature gradients within it ( 1000 K/cm) make it impossi- 
ble to use a contact method such as a thermocouple without 
affecting the temperature and velocity profiles within the 
puddle. Applications also exist in other research areas such 
as high temperature mechanical testing and high-tempera- 
ture metallurgy. 

All of these and many other processes would benefit 
from a noninvasive method of temperature measurement. 
Multiwavelength pyrometry may be the solution to this 
problem. 

A. Basic theory 

All bodies above absolute zero radiate thermal energy. 
The most efficient thermal radiator is a black body, which is 
defined as an object that will absorb all incident radiation. 
The Stefan-Boltzmann law describes the radiant emittance 
( W ’) of a black body in units of power per unit area of the 
source: 

W ’ = OT’, (11 
where T is the absolute temperature and CT is the Stefan- 
Boltzmann constant. A real body, however, emits only a 
fraction of what a black body emits at any given tempera- 
ture. The total hemispherical emissivity is thus defined as 

E= w/wt, (2) 
where W  is the radiant emittance of a real body. The radi- 
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ante (N) of a source is defined as (the radiant emittance per 
solid angle) 

N= W/r (3) 

The radiance per unit wavelength, or spectral radiance for a 
black body is given by the Planck radiation law. 

For a real body, Planck’s equation must be modified by 
the inclusion of an emissivity term (Ed ) to give Eq. (4) be- 
low 

Ni = E,4 Cl 
R ‘[exp(CJ/ZT) - I] ’ 

(4) 

where /i is the wavelength, T is the absolute temperature, 
and C, and C, are the Planck constants. 

The emissivities of real bodies are functions of wave- 
length, temperature, and surface condition. For the purpose 
of this discussion the most important of these factors is 
wavelength. The emissivity can easily vary by 10% over fair- 
ly small wavelength ranges. Therefore any pyrometer that 
does not account for emissivity can produce significant er- 
rors. Because emissivity is rarely known for a given set of 
circumstances, it must be either measured or calculated sep- 
arately if an accurate temperature determination is to be 
made. 

Brightness pyrometers, which allow the operator to 
match the appearance of a heated, calibrated standard to the 
appearance of the object, attempt to solve the emissivity 
problem by making the standard of the same material as the 
object, but this tactic severely restricts the use of the device 
because it may not be possible to get a standard of the same 
material and surface condition. Furthermore the emissivity 
of the object can change quite rapidly as the environment 
and surface conditions change. 

An improvement over the brightness pyrometer is the 
total radiation pyrometer. This instrument uses the Stefan- 
Boltzmann relation and measures the radiance electronical- 
ly using a photodetector, but it still suffers from the inaccu- 
racies caused by uncertainties in the emissivity determina- 
tion. This device has the advantage of speed and 
compactness over the brightness pyrometer and is capable of 
measuring relative temperatures quite accurately. 

Ratio or two-color pyrometers, on the other hand, can 
circumvent the emissivity measurement issue in certain spe- 
cific cases. The two-color method uses an approximation of 
the Planck relation called the Wien radiation relation: 

N/. = 
El c, 

A ’ exp(CJ,lT) ’ 
This approximation gives a deviation of less than 1% from 
the Planck law if 

AT< 3125 pm K. 

The Wien relation can be solved for temperature at two dif- 
ferent wavelengths to give: 

G& -2,) 
T= {/z,A,[5 In(/Z,/R,) - ln(N,/N?) + In(e,/e,)]] ’ 

(6) 
If the wavelengths R, and /1, are chosen such that gray 

body behavior can be assumed (i.e., E, = E?), then the emis- 
sivity term drops out and the temperature calculation is 
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straight forward. The assumption of gray body behavior be- 
comes more valid as M = (/2, - &) --* 0 but as M -+ 0 any 
errors in the radiance measurements become more signifi- 
cant. Increasing the separation of the wavelengths reduces 
the effects of radiance measurement errors but the gray body 
assumption becomes less valid. 

To increase the accuracy of the device farther, the emis- 
sivity must be modeled better. This can be achieved by mea- 
suring the spectral radiance at a larger ( > 2) number of 
wavelengths. The class of techniques called multiwave- 
length pyrometry is based upon such multiple radiance mea- 
surements. These techniques model the emissivity as a 
smooth function of wavelength having a number of undeter- 
mined parameters. Equation (4)) using the emissivity mod- 
el, is then curve fit to the experimental data to determine the 
values of the unknown parameters in the emissivity function 
and the temperature. 

This document describes the results of a comprehensive 
study of the sources of error and the limitations of the ratio 
technique. 

II. RATIO PYROMETRY 
All multiwavelength pyrometry techniques work on the 

same principle: modeling the emitted radiance of a real body 
at a given temperature as the product of an emissivity and 
the theoretical radiant output ofa black body as predicted by 
the Planck radiation law. Beyond that, these techniques can 
be divided into two general classes. Those in the first class, 
which we have chosen to call “interpolation based tech- 
niques” and which are being discussed here, make radiance 
measurements at n + 1 different wavelengths and model the 
emissivity as consisting of n undetermined parameters. The 
n + 1 equations thus generated are then used to calculate the 
temperature, either by eliminating theemissivity parameters 
or by calculating both the emissivity and the temperature. 
The second class of techniques, which we will refer to as 
“least-squares-based techniques,” are only different from 
the previous class in that the radiance measurements are 
made at m wavelengths such that m $ n and the redundancy 
in the data is used to smooth out the effects of noise in the 
data. The least-squares technique will be discussed in greater 
detail in part II. 

For now we shall concentrate on the interpolation based 
techniques. These can be further separated into two distinct 
approaches; those that use the data to eliminate the emissi- 
vity from the formulation and calculate only the tempera- 
ture (referred to as ratio pyrometry); and those that explicit- 
ly calculate both the temperature and the n emissivity 
parameters by generating an n + 1 order interpolating poly- 
nomial. 

The latter of these two approaches was first suggested by 
Svet.‘-’ The theoretical errors associated with this technique 
have been extensively analyzed by Coates~ and shown to be 
quite unacceptable for n > 3. Ratio pyrometry, on the other 
hand, has been around much longer. The theory and history 
of two, three, and four color ratio pyrometry has been given 
by Reynolds.s We shall in this article attempt to investigate 
certain characteristics of Ratio Pyrometry, which to our 
knowledge have not been considered before. 
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A. Theory T, =fbLM,~,hd, 
The theory of ratio pyrometry is relatively simple in that 

it consists of building ratios to eliminate the emissivity when 
certain assumptions hold true. 

1. Two color 
The energy flux N1 emitted by a real body in the wave- 

length range R to R + d/z is given by Planck’s law as 

N,d/z = 
ei; C,dA 

A “[exp(C,//ZT) -1] 
= E,&l)d/t. 

For a one color pyrometer the error in temperature as a func- 
tion of the error in the radiance measurement and the emissi- 
vity estimate can be estimated from the differential form of 
this equation. This equation as derived by Hunter’ (among 
others) is listed below. Defining 

A = C/AT, 3 = Ae”/(eA -- l), 

dnii, deA BdT 
NA =F+-? T 

the quantity B for our temperature (around 1800 K) and 
wavelength range (0.7-1.0 pm) is of the order of 10. This 
implies that a 10% error in radiance measurement or a 10% 
error in the emissivity estimate will cause at most a 1% error 
in the temperature estimate. 

If we now take the ratio of the emitted energy fluxes 
centered on R, and /i, 

R,,=& = c,f(A,)dA, . 
- N2d& M(Wd& 

With equal bandwidths and with Wien’s approximation, this 
results in 

T= C,[(l//z,) - (l//i,)] 
In RI2 - 5 ln(&/;1,) - ln(e,/ez) 

The assumption of two color pyrometry is that E, = ez, 
and so the apparent temperature ( T, ) measured by the py- 
rometer is 

T = G[(l/&, - (l/A,)1 0 lnR,, - 5 In(R//Z,) ’ 

The error of a two color pyrometer as given by Reyn- 
olds’ is 

1 1 --.--.-..= /J A In 3 . 
T To ( > C&b-~,) 62 

From (7) we get 

T, = 
TC&, -&I 

c,(R, -/El + T/z,& !n(EI/E2) ’ 

(7) 

Ifwenowletll,=/l,/i,=R +h/Z,e,=e,and~~=e+A~, 
then 

T, = TC,M 
C,--T/Z(~+a/r)[Ine--ln(e+Ae)] * 

For a specific target temperature T 
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dT, =~d,%car”dM +sde+sdAe. 
am at- dAE 

(8) 
Later on we shah see that the apparent temperature, as 

predicted by a two-color pyrometer tends to an asymptote 
under certain circumstances. This behavior can have two 
possible causes, i.e., the failure of the Wien approximation or 
the misbehavior of the terms in Eq. (8). At the wavelengths 
and temperatures in question ( < 1.1 pm and < 2500 K) the 
Wien approximation is very good and does not cause any 
problems. The asymptotic behavior must therefore be 
caused by one or more of the terms in Eq. ( 8). 

Assuming that the uncertainty at both the wavelengths 
(A, and R,) is the same, we can show that 

dM <2d/i, dAr<2de, 

and if ( he/M ) = K then we have (for small enough M or if 
e is linear in /2 ) 

dT, < 
aT, ar, 

- +2- 
aT 

a/z afu 
+-KL 

aE 
d/l, (9) 

where K is generally less than 1. 

2. Three color 

Three-color pyrometry is also based on an algorithm 
similar to two-color pyrometry. Here we form two ratios, 
R ,? and R,,, and after taking logarithms we get 

ln(R,,R,,) = In(y) + 5 ln(-$-) 

If d/2, = d/i? = d,l,, then 
T= A/i?, 

where 

A=G[(e) -(*)I % 
B=ln($j -In(z) -5ln(-$-). 

Three-color pyrometry makes the assumption that 

ElE.3 = 4, 
and the temperature error in this case is given by 
1 1 ---= /2. M, 
T r, (A --~,)bb-~,)(~, --&I 

X[A,ln(,> +&In(:) +A,In(:)]. 

3. Faur color 

Similarly for four colors we make three ratios R,2, R13, 
and R,, 
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C. Reference temperature 

In some systems of practical interest one may find a 
point in either time or space where the temperature is 
known, e.g., a fusion boundary. It would be useful to consid- 
er whether one may take advantage of this information to 
improve the accuracy of the temperature predictions. 

The methodology here would be to calculate the emissi- 
vity ratio at the known temperature and then to use this ratio 
to calculate temperatures away from the reference point. 
Thus, for a two-color method to predict correct tempera- 
tures, the emissivity ratio away from the reference point 
must remain equal to the value calculated at the reference 
point. 

To analyze this approach we need to be concerned with 
the temperature dependent behavior of emissivity at a con- 
stant wavelength, i.e., we need to examine functions of the 
sort 

El =f*, cn, E2 =fA>(n. 
For many systems of interest the emissivity is a linear func- 
tion of temperature so that we can say 

~,=m,T+b, l ~=rn~Tfb,. 

For such a system we can show that 

Xexp(+ [(*) + (*) 

which reduces to 

T= A/B, 

A=G[(e) +(e) -(*)I, 

B=ln(y) -In(g) -,ln(z). 

Four-color pyrometry gives the correct temperature if 
E,.$ = 4~. The error for four color pyrometry is given by 

1 1 ln(E,4/4e4) ---= 
T 7-u C?[(2/&) - (l/A,) - (2//l,) + (l//l,)] . 

If we approximate 

e2-e3 - he, e4-e3 + AE, 
, 

Et El Es 1 AA= 1 
62 64 +Ag=i- 

if ( AE/E~)‘< 1. Similarly with & = /1, - AL, and 
L$=R,+M, 

1 1 1 1 -- 
= /2,--M a, + 

-- 
4fM 4 

=4-4+M+4-4-M =O 
a.Tu: - M ‘1 

So for four colors 
1 1 ---s ln(c,/c2) 
T T, C,](l/&) - (l//l,)] ’ 

which is the same as the error for a two-color pyrometer as 
given by Eq. (7). 

B. Measurement noise 

If one were to assume that the effect of measurement 
noise in the radiance is an uncertainty in the associated emis- 
sivity, then Coatesj has shown that the error in the predicted 
temperature is given by 

ATl - (l/C,)(n~-e,‘/Z,)(AE,/E,) 
T’ y,;,, (A, -A,) ’ . 

(10) 

where 

AT = T - T,xec,,cted 9 
Tis the true temperature, and n + 1 the number of different 
wavelengths. 

This equation states that the effects of measurement 
noise grow with the number of terms in the ratios, implying 
that two-color pyrometers are the most practical of the ratio 
pyrometers. 
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AT monotonic function of F = (m,/m2) - (6,/b,), 
(11) 

where AT is the difference between the predicted and the 
actual temperatures. 

Similar relations can be derived for emissivities with 
higher-order temperature dependencies, but this shall suf- 
fice to illustrate our point here. 

D. Computer simulation 

To examine the effects of different emissivities and noise 
levels, etc., a set of computer simulations were performed. 
Input data for the simulations were generated by calculating 
theoretical (Planck) black body radiances and then multi- 
plying these by typical emissivity values for various metals. 
These data were then multiplied by a pseudorandom number 
to simulate the effects of noisy measurements. 

The emissivity data were extracted from the published 
literature7-I5 and curve fit to various polynomials and expo- 
nential polynomials. Table I lists the coefficients of these 
polynomials, where 

m--l 
Emissivity(/2) = C aiil ’ 

i=O 

and 

Emissivity(R) = exp 

Figure 1 shows the match between the fitted functions and 
then the actual data for some of these metals. 

These generated data were then used with the equations 
of the previous section to predict temperatures. Emissivity 
values from the literature were also introduced directly 
(without prior fitting) but these did not give significantly 
different results. 
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TABLE I. Fitting parameters for emissivity data of several materials from 
the literature. 

Emissivity 
code number 

0 

1 

2 

3 

4 

5 

Coefficients 

Material Polynomial Exponential 

Black body a,, = 1.000 

Cadmium 4(, = 1.330 
a, = - 1.636 
a2 = 1.809 
4, = - 0.606 

Chromium a,, = 0.773 
4, = - 1.37 
a? = 1.524 . 
a,= -0.539 

Iron 1 4,, = 0.755 a,, = - 0.361 
4, = -0.971 4, = - 0.667 
az = 0.9323 
as= - 0.337 

Iron 2 a,, = 0.35 
a, = 0.672 
4: = - 1.220 
4, = 0.547 

Nickel a,, = 1.05 
4, = - 2.321 
u2 = 2.424 
a,= -0.872 

6 Platinum 1 a,, = 1.3485 a,, = - 0.793 
4, = - 3.1724 a, = - 0.554 
a2 = 3.1142 
us = - 1.0527 

Platinum 2 a,, = 0.8283 
a, = - 0.9073 
a2 = 0.3133 

Molybdenum aI, = 0.4950 ‘I,, = 0.0892 
4, = - 0.0910 a, = - 1.0435 
4, = - 0.0033 
n, = - 0.1680 

9 

10 

Lead 4(, = - 0.056 
a, = -0.909 

Tantalum a,, = 0.910 a,, = - 0.642 
a, = - 0.655 4, = - 2.103 

E. Systems with a reference point 

To simulate the occurrence of a reference point in the 
system under observation the following algorithm was de- 
vised: 
1. Pick a temperature profile. 
2. Pick two of the following emissivity-temperature depend- 
encies: Linear (positive slope); Linear (negative slope) qua- 
dratic. 
3. Generate radiance profile. 
4. Add noise. 
5. Calculate the emissivity ratio at the known temperature. 
6. Use the emissivity ratio to calculate the temperature at 
other points. 

It should be pointed out that this method will only yield 
an advantage if the system under observation is not a gray 
body at the reference temperature. There is evidence”*” 
that at least some metals exhibit gray body behavior at their 
melting point. 

F. Results and discussion 
Figures 2 through 4 present the results of some of the 

simulations for two-, three-, and four-color ratio pyrometers 
for a target temperature of 1000 K. These results were gener- 
ated with zero noise and using a wavelength separation of 
12.5 nm. The similarity in the results of the different tech- 
niques shows that there is no advantage in using more than 
two colors for a ratio technique even in the absence of mea- 
surement noise. 

There are two interesting aspects to these curves, name- 
ly the fact that none of the emissivities gives an error less 
than about 4%, and all of the predicted temperatures tend 
towards asymptotic behavior at some wavelength. Both of 
these facts are in complete agreement with the theory pre- 
sented earlier. The minimum error behavior occurs because 
the constant emissivity assumption is never satisfied. The 
asymptotic behavior, on the other hand, can be explained by 
examining Eq. (9) in greater detail. 

> 
4 
*- 
> 

.- 

z: 
.- 

: 

1 .a 

0.8 

X : Platinum 
q : Chromium 
h : Molybdenum 
0 : Iron 

0.6 

0.4 

FIG. 1. Experimental emissivity 
data and the appropriate fitted 
curves. 

0.7 0.8 0.9 1 .a I.1 1.2 

Wavelength (micrometers> 
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w 
0 

4 Q50 
u 
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ck 
800 

\ 
Separation : .0125 micrometers Fe2 

Target Temperature 1000 K 
\ 

0.60 0.80 1.00 1.20 1.40 

First Wavelength (micrometers) 

In examining Eq. (9) we should recognize that emissi- 
vity and wavelength are not independent; in fact, 

E =f(A). 
So for a specific material over a specific wavelength range we 
are not free to pick any values for K. Specifically for the 
materials considered here (Table I) we get the following 
ranges for K: 

Cr-O.l<K< t-0.1, 

Pt 1 - 0.4 <K < - 0.1, 

MO - 0.5 <K < - 0.1, 

Fe2 - 0.2 < K < 0.05. 

1100 

2 
” 

Q) 1050 

3 4-a 
0 
ii 
a 1000 

f 
I- 

FIG. 2. Temperature predictions us- 
ing a two-color method (zero noise), 

We now turn our attention to the partial derivatives of 
Eq. (9). Figure 5 is a plot of these quantities versus K. We 
can see that the AC and M derivatives can be the dominating 
terms in this equation depending upon the value of K. This 
implies that the critical factor in determining the behavior of 
T, is K. This assertion is borne out by Fig. 6 which depicts 
the behavior of the predicted temperature ( T, ) versus wave- 
length for various values of K. Of course this comes as no 
surprise if we keep in mind that in the limit as M-O, K is 
just the slope of the emissivity with respect to /1. 

If K is indeed the controlling influence on T,, then the 
magnitude of the wavelength separation (M) should have a 
minor effect on the accuracy of the temperature prediction. 

Separation :.0125 (micrometers) 

Target Temperature 1000 K 

0.00 1.00 1.20 f .40 

First Wavelength (micrometers) 

FIG. 3. Temperature predictions us- 
ing a three-color method (zero 
noise ) . 
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f 
n t00a 

G 
l- 

Separation : .0125 micrometers \ 

Target Temperature 1000 K 
F‘e2 

0.80 I .ea 1.20 1.40 

First Wavelength Cmicrometers> 

FIG. 4. Temperature predictions us- 
ing a four-color method (zero 
noise). 

The preceding statement assumes that changing h/z does not 
change K appreciably and that we are dealing with noiseless 
data. This is demonstrated by Figs. 7(a) and 7(b) which 
depicts the predicted temperature for Cr and MO for various 
values of M. 

Similar results were obtained at a target temperature of 
1800 K. 

G. Effects of noise 
The addition of noise to the input data makes the uncer- 

tainty of each temperature prediction considerably worse. 
As depicted in Fig. 8 even the addition of 0.2%-rms noise 
causes a significant increase in the uncertainty in the predict- 

ed temperature. Additionally the three and four color ratio 
(not shown here) simulations predicted temperatures that 
respond in a progressively worse manner to the addition of 
noise. 

H. Reference temperature 

The reference temperature simulations were performed 
on a decreasing and an increasing temperature profile. As 
expected the error between the predicted and target tem- 
peratures is directly proportional to the quantity r (see Ta- 
ble II) described in the theory section. 

The largest error above was caused by pairing a linear 
emissivity-temperature dependence with a quadratic depen- 

3 x : bT/b& 
200 n : ~T/~AE: 

A : bT*/bh 
+ : b</bAh 

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 

K Cl/micrometers> 

FIG. 5. The partial derivativesof T,, 
vs K. 
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r\ 
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u 
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& 1800 ___--___-------___---------- 
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FIG. 6. Effect ofKon the predicted temperature T, (two 
color). 

FIG. 7. Effect ofchanges in the wavelength separation on 
the two-color temperature prediction for (a) Cr, (b) MO. 
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Separation : .0125 micrometers 

-I RMS Noise : 0.2X 

Target Temperature l000 K  

0.80 1 .El0 1.2% I .48 

First Wavelength (micrometers> 

1800 

I600 

1400 

1200 

x : Tot-got Temperature 
q : Nolralsr.: PredictIon 
A  : 0.5 %  R M S  NOISY 

0 2 4 

Time or Space 

6 8 

TABLE II. Temperature error as a function ofemissivity slope mismatch 

Temperature error 
(K) l- 

200 6.8 
60 1.0 
10 0.77 

FIG. 8. Predicted temperature using 
a two color method on noisy (0.27~) 
data at 1OOO K. 

FIG. 9. Actual and predicted tem- 
perature profiles away (in t ime or 
space) from a reference point 
l- = 0.77. 

400 Rev. Sci. Instrum., Vol. 62, No. 2, February 1991 Temperature measurement 400 



2000 

2 I800 

z 

2 
& 

1600 

E” 
F 1400 

1200 

0 2 4 

Time or Space 

6 8 

dence. Figures 9-l 1 depict the results of these simulations. 
The addition of 0.5% rms random noise does not affect 

the results too badly. The over all uncertainty in the predic- 
tions does go up as a result of the noise, but the average value 
is not affected too much. 

blow up (i.e., has an asymptote) for all the emissivity func- 
tions examined here. 

III. DISCUSSION 

Ratio pyrometry methods are also very sensitive to mea- 
surement noise. This sensitivity grows quickly with the num- 
ber of terms in the ratio. Thus, it is recommended that if ratio 
pyrometry is to be used one should choose the two-color 
method over methods employing higher ratios. 

The method of ratio pyrometry has been shown to result If the emissivity of the object system meets certain con- 
in extremely large errors under certain conditions. These straints and the system has, in space or time, a point where 
conditions can arise quite frequently as demonstrated by the the temperature is known, then the two-color method can be 
simulations performed here. This method is better suited to used to get very accurate temperature measurements away 
the shorter wavelengths. The predicted temperature tends to from this reference point. This technique can yield better 

FIG. 10. Actual and predicted tem- 
perature profiles away (in time of 
space) from a reference point 
I- = 1.0. 
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FIG. Il. Actual and predicted tem- 
perature profiles away (in time or 
space) from a reference point 
r = 6.8. 
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results (than a regular two-color method) if theemissivity of 
the system being observed is not wavelength independent at 
the known temperature. 
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